
It slices, dices, and
makes julienne data!

or, Processing data with RecordStream, also
known simply as recs

Thomas Sibley — YAPC::NA 2015

Hi! Thanks for coming to my talk today.

Who am I?

My name is Thomas Sibley. I’m TSIBLEY on
CPAN and trs on IRC and Twitter.

Mullins Lab @ the University of Washington

I’m Thomas Sibley, or TSIBLEY on CPAN and trs on IRC. Currently I work more or
less as a staff programmer in the Mullins Lab, a microbiology research lab at the
University of Washington. I handle a lot of poorly curated, but nevertheless important,
datasets, and also have lots of ad-hoc day-to-day data processing needs.

recs will...

• bring consistency to data manipulation

• answer questions of your data quicker

• enhance correctness thru increased insight
• erase the guilt of using split and join instead

of Text::CSV

I’m really excited to show you a better, faster, more consistent way to work with data,
and I want you to come away with the knowledge to start using this fantastic toolset
called recs. It’ll save you time, provide tools to better validate your data, and you’ll
get to feel good about finally using Text::CSV for all those times you used split and
join despite knowing all the ways it would break.

recs is something I came across right around the time I was starting a new job almost
two years ago. It happened to be the perfect time to discover recs for me, because in
my new job I was responsible for most of the data stewardship for the biology
research lab I now work it. My primary job description was maintaining and
developing an in-house clinical, research, and analysis data repository called
Viroverse, but there was also a lot of ad-hoc support for the scientists dealing with
smaller, on-the-fly datasets and transformations on those. I was quickly getting tired
of writing giant messes of one liners and directories of scripts only used a few times
and wanted something that let me build better pipelines. I shortly became involved
maintaining and developing recs as I used it every day.

Let’s look at what makes recs so useful.

RecordStream, or recs

is “a collection of command line tools for
processing, analysing, and transforming data
as streams of JSON records.”¹

¹ https://metacpan.org/pod/App::RecordStream#SYNOPSIS

recs is the Unix coreutils for data. It’s a tool box to deal with the data you have — not
the data you wish you had — and it strives to Just Work. Whereas many standard
Unix tools like cut and sort and grep support tabular, delimited data, recs embraces a
JSON stream format and provides a number of tools which consume and produce
that format.

https://metacpan.org/pod/App::RecordStream#SYNOPSIS

Stream format

• One JSON record per line

{"year": 2013, "city": "Austin"}

{"year": 2014, "city": "Orlando"}

{"year": 2015, "city": "Salt Lake City"}

The stream format itself super simple, and the lingua franca of all recs commands.
Each record is a single-line JSON Object, and one line equals one record. That’s all!
This makes the record stream dead simple to redirect to a file or send across a
network connection. It’s important to note that the JSON records must be capital O
Objects, or what we more sensibly call hashes in Perl. There’s no limitation on the
values of your keys, however, and it’s perfectly fine to have nested data structures.

Commands at the edges of your pipeline handle marshalling of data to and from
JSON streams and other formats, such as CSV, SQL, or access logs.

Commands

• Any data → Records (from*)
• Records → Records
• Records → Any data (to*)

The commands which make up recs can be classified into three primary groups:
those that produce records from other formats (the from commands), those that
produce other formats from records (the to commands), and those in between which
transform records in some way. Let’s look at the first group.

From commands

fromapache
fromatomfeed
fromcsv
fromdb
fromjsonarray
fromkv
frommongo

frommultire
fromps
fromre
fromsplit
fromtcpdump
fromxferlog
fromxml

These are the from commands, and they’ll be your first step of using recs to read your
existing data. recs comes with built-in support for a slew of formats and data sources,
and I highlighted a few of the ones that I get the most use out of, but your mileage
may vary! Since I work in a biology research lab, most of my day-to-day data is
spreadsheets, databases as glorified spreadsheets, and ad-hoc formats. I left out a
few custom formats specific to bioinformatics that aren’t in core recs but that were
easy for me to write commands to support. fromcsv is the real workhorse for me; it
also handles TSV and anything else the Text::CSV module can parse. If all you use
from recs is fromcsv, you’re still better off than you were before!

To commands

tocsv
todb
togdgraph
tognuplot

tohtml
toprettyprint
toptable
totable

eval

Once your data is in recs, you want to know you can get it back out. The goal isn’t to
keep your data as streams of schema-less JSON records forever (unless you’re into
NoSQL).

For tabular data with any arbitrary delimiter, the primary output command is tocsv.
totable prints a pretty, ASCII table which is indispensable when reviewing results or
copying and pasting into an email. The common options for commands are
standardized, so I’ll often make a larger pipeline output a table in development/debug
mode and a CSV in real use just by conditionalizing the command name.

In the case of recs, the eval command refers to evaluating a snippet of Perl for each
record. It loops over input records and pushes arbitrary lines of output as returned by
the code snippet run on each record. This is like your plain old Perl oneliner, but with
the convenience of records as input, and it’s just as handy.

Even with just the from and to commands you can start to do something useful, like
look at a CSV...

$ cat slc-sky.csv
mean_observed,month,sky
5.6,January,Clear
6.5,January,"Partly Cloudy"
18.9,January,Cloudy
5.2,February,Clear
6.9,February,"Partly Cloudy"
16.1,February,Cloudy
7,March,Clear
8.1,March,"Partly Cloudy"
15.9,March,Cloudy
6.7,April,Clear
9.3,April,"Partly Cloudy"
14.0,April,Cloudy
9.0,May,Clear...such as this one, as an aligned table that’s easier to read...

$ recs fromcsv --header slc-sky.csv \
 | recs totable -k month,sky,@mean

...by using fromcsv and totable.

$ recs fromcsv --header slc-sky.csv \
 | recs totable -k month,sky,@mean
month sky mean_observed
--------- ------------- -------------
January Clear 5.6
January Partly Cloudy 6.5
January Cloudy 18.9
February Clear 5.2
February Partly Cloudy 6.9
February Cloudy 16.1
March Clear 7
March Partly Cloudy 8.1
March Cloudy 15.9

This example is a trivial data set of the average number of days of three sky
conditions observed over Salt Lake City. Even with a small dataset, don’t
underestimate the power of simply being able to see the distribution and kind of
values you have. This is especially true as the dataset grows more fields and more
records.

The most interesting commands, though, are the ones that transform your records
rather than just input and output them.

Transformational commands

annotate
assert
chain
collate
decollate
delta
flatten
generate

grep
join
multiplex
normalizetime
sort
stream2table
substream
xform

These commands are the heart of recs and provide powerful building blocks for
manipulating and analysing your record stream. grep, sort, and join are all pretty
much what you’d expect, except that grep takes a Perl snippet to evaluate for
truthiness against each record.

collate is how you summarize and group records together and generate aggregate
values like counts, sums, arrayrefs of records, and more. If you can use SQL’s
GROUP BY clause for it, you can probably use recs collate.

xform is a general purpose record transformer that can also operate on sliding
windows, if you need it to. xform is both high and low-level enough that you could
implement collate and grep in it if you wanted.

assert lets you explicitly state your assumptions about your data along the way, so
that something useful happens when those assumptions are broken. It’s basically
grep but it dies when a record doesn’t match. Combined with bash’s pipefail option,
for example, you can bail out of the entire pipeline with an error status if an assertion
is broken.

Snippets

$r is the current record

$r->{key}

ref($r) eq "App::RecordStream::Record"

$r->rename("key", "newkey")
$r->prune_to("foo", "bar")

Many of these commands take arbitrary snippets of Perl to execute per-record or per-
group of records. There are a few conveniences and conventions that make snippets
easy. $r is always the current record, and can be accessed just like a hashref. It’s
actually an instance of the App::RecordStream::Record class too, which provides
some nice utility methods. There are a bunch of basic methods to set and get fields
as well as helpers to rename fields and prune the record to the set of fields you
specify. prune_to is particularly useful with large records.

Snippets

 {{key}} eq $r->{key}
 {{sub/key}} eq $r->{sub}{key}
 {{key/#2}} eq $r->{key}[2]
 {{fuzzy}} eq $r->{fuzzy_wuzzy}

-E loads file as a snippet

-M works like perl’s, including imports

The only syntax difference between snippets and vanilla Perl is the special double
curly brace which does a fuzzy key lookup, using slashes for nested data structures.
Keys that can’t be found are autovivified, so you can use the double curlies to add
new keys too. Fuzzy key matching can be triggered outside of a snippet by prefixing
your key with an @ sign, which is often useful when specifying a keyspec for the dash
k (-k) option.

Snippets are specified with the familiar -e option, although the -e is nearly always
optional. Dash capital E (-E) loads a file as a snippet, for when you outgrow a single
line. Dash capital M (-M) works just like perl’s; it imports a module into your snippet.

For commands like grep, a snippet is the primary argument...

Slice!

recs grep '{{sky}} eq "Cloudy"

 and {{mean}} >= 10'

recs grep -v '{{sky}} =~ /Partly/'

recs grep '{{sky}} !~ /Partly/'

recs sort -k sky,mean_observed=numeric

Grep will take any condition you want. It supports some of the most useful GNU grep
options such as match inversion (dash v) and leading/trailing context (dash capital C,
A, and B). Record context is accessed via the $A and $B arrayrefs in your snippet.

Sort will order by multiple keys, stringwise or numerically, forwards and reverse. It’s
not complicated, but still essential.

Dice!

recs xform -MMonth::Utils=name_to_num \

 '{{month_n}} = name_to_num({{month}})'

recs xform 'push_output(... ? $r : ())'

xform is the food processor for you data that lets you do whatever you want to your
records. It takes a snippet which may or may not modify the record and outputs the
new record. Think of it as map for your record streams.

xform also provides a couple snippet helper functions like push_output() and
push_input(). For example, you can reimplement the grep command using
push_output() to either push the current record or push nothing (which suppresses
the normal xform behaviour of outputting the current record).

Julienne!

recs collate -k sky -a count

{"count":12,"sky":"Clear"}
{"count":12,"sky":"Partly Cloudy"}
{"count":12,"sky":"Cloudy"}

xform is great for handling individual records, but if you want to group and summarize
your data, you want to use collate, the Japanese mandoline of recs. collate groups by
a set of keys you provide and applies the aggregators you specify, if any, outputting a
single record for each group.

Julienne!

recs collate -k sky

recs collate -k month -a sum,@mean

All the aggregate functions you might expect are there, such as a sum over a key.

Julienne!

{"month":"January","sum_@mean":31}

{"month":"February","sum_@mean":28.2}

{"month":"March","sum_@mean":31}

{"month":"April","sum_@mean":30}

{"month":"May","sum_@mean":30.9}

{"month":"June","sum_@mean":30}

{"month":"July","sum_@mean":31}

{"month":"August","sum_@mean":31}

{"month":"September","sum_@mean":30}

{"month":"October","sum_@mean":31.1}

{"month":"November","sum_@mean":30.1}

{"month":"December","sum_@mean":31}

and aggregators add new fields named after the aggregator’s name and the
aggregated fields.

If I wanted to verify that this data is sane, I could apply the assert command to this
collation...

Julienne!

recs collate -k sky

recs collate -k month -a sum,@mean \
 | recs assert -v '{{sum}} <= 31'

...and check that the means for each month don’t total more than 31, the maximum
number of days that should be in any month. When I run this, assert finds a
problem...

Julienne!

...
Assertion failed!
Expression: « {{sum}} <= 31 »
Filename: -
Line: 10
Record: $r = {
 'sum_@mean' => '31.1',
 'month' => 'October'
 };

and tells me that line 10 of the input had a record with a sum that failed my condition.
In this case, it looks like there’s probably some rounding errors in the data.

Julienne!

recs collate -k sky

recs collate -k month -a sum,@mean \
 | recs assert -v '{{sum}} <= 31'

recs collate -k month \
 -a maxmean=recordformax,@mean

There are also aggregators which make slightly more complicated things easy, like
pulling out the record from a group with the maximum value for a particular key. This
example uses the recordformax aggregator...

Julienne!

recs collate -k sky

recs collate -k month -a sum,@mean \
 | recs assert -v '{{sum}} <= 31'

recs collate -k month \
 -a maxmean=recordformax,@mean

specifying the field which fuzzily matches “mean”...

Julienne!

recs collate -k sky

recs collate -k month -a sum,@mean \
 | recs assert -v '{{sum}} <= 31'

recs collate -k month \
 -a maxmean=recordformax,@mean

...and stores the aggregated value, in this case the entire record, in a new field called
maxmean. Specifying the name for our new aggregated value avoids a pretty ugly,
but still functional, name.

Running this command produces 12 records, one for each month, that look like...

Julienne!

{
 "month" : "January",
 "maxmean" : {
 "month" : "January",
 "mean_observed" : "18.9",
 "sky" : "Cloudy"
 }
}

...this, if you prettify the single-line record with newlines and indents.

Julienne!

recs collate -k sky

recs collate -k month -a sum,@mean \
 | recs assert -v '{{sum}} <= 31'

recs collate -k month \
 -a maxmean=recordformax,@mean \
 | recs totable -k month,maxmean/sky

Instead of prettifying by hand, we could pipe the stream through the totable command
with the fields of interest.

Julienne!

month maxmean/sky
--------- -----------
January Cloudy
February Cloudy
March Cloudy
April Cloudy
May Cloudy
June Clear

month maxmean/sky
--------- -----------
July Clear
August Clear
September Clear
October Clear
November Cloudy
December Cloudy

and see that Salt Lake is cloudy in the winter and sunny in the summer. No surprises
there!

Aggregators

array
avg
countby
concat
correlation
count
covariance
dcount
first
firstrec
last

lastrec
linreg
max
min
mode
percentile
percentilemap
recformax
recformin
records
stddev

sum
uarray
uconcat
valuestokeys
variance

There are lots of aggregators that collate supports. You can get more info on each of
these using the --show-aggregator option to the collate command. If you don’t see
the one you want, there’s also easy ways to specify custom map-reduce and inject-
into aggregators which pretty much let you build whatever you want using Perl
snippets.

collate is a command that you’ll use more as you become familiar with the best ways
to apply it. Another advanced command is join...

Crossing the streams

month,high,low
January,37,21
February,43,26
March,53,33
April,61,39
May,71,47
June,82,56
July,91,63
August,89,62
September,78,52
October,64,41
November,49,30
December,38,22

...which lets us cross record streams. Suppose we have another data set for Salt
Lake City that looks like this: average monthly high and low temperatures in degrees
Fahrenheit. We want to combine it with our sky observations for each month.
Despite what some people claim, joins are easy!

Crossing the streams

recs join month month \
 <(recs fromcsv --header slc-sky.csv) \
 <(recs fromcsv --header slc-temp.csv)

The join command takes four primary arguments, although you can omit the last one
if you’re piping records to stdin. The first two arguments are the names of the keys
we should match records from each dataset on. In this case, we’re using month
names.

Crossing the streams

recs join month month \
 <(recs fromcsv --header slc-sky.csv) \
 <(recs fromcsv --header slc-temp.csv)

The next argument is the left-hand side of the join, and we’re producing a record
stream from a csv using bash’s nice subshell redirection syntax.

Crossing the streams

recs join month month \
 <(recs fromcsv --header slc-sky.csv) \
 <(recs fromcsv --header slc-temp.csv)

We do the same thing for the temperature data, and then look at the results.

Crossing the streams

month sky mean_observed high low
--------- ------------- ------------- ---- ---
January Clear 5.6 37 21
January Partly Cloudy 6.5 37 21
January Cloudy 18.9 37 21
February Clear 5.2 43 26
February Partly Cloudy 6.9 43 26
February Cloudy 16.1 43 26
March Clear 7 53 33
March Partly Cloudy 8.1 53 33
March Cloudy 15.9 53 33
April Clear 6.7 61 39

We now have each month’s high and low merged into our sky records! The join
command sensibly defaults to an inner join, but also supports left, right, and full outer
joins.

Missing something? Write your own!

use JSON::MaybeXS;

while (<>) {

 my $r = decode_json($_);

 ...

 say encode_json($r);

}

By now you’ve seen a handful of commands that recs has to offer. One of recs best
features though is it’s flexibility: it provides a sensible, convenient core and lots of
ways to extend it as long as you follow a minimal set of conventions. For example, if
you can’t find the command you want, it’s easy to extend with your own commands.
At the simplest, you can write a program where you fill in this ellipsis, and that’s all!
Decode a line of JSON, do some stuff, encode it, repeat.

Missing something? Write your own!

import sys, json

for line in sys.stdin:

 r = json.loads(line)

 ...

 json.dump(r, sys.stdout, \

 separators=(',', ':'))

 print

...or maybe it’s easier to do what you want in Python! This is certainly true for some
of the custom commands I wrote for bioinformatics work, where libraries like
BioPython rule the day. recs is written in Perl, but there’s no reason your commands
have to be! There’s even a subset of the standard collate command, called recs-fast-
collate, which is written in C for speed that you can drop in to most pipelines if you’re
getting bogged down.

One of the important goals for recs is that it relies only on a minimal set of
conventions, letting you use whatever data formats and languages make the most
sense for you. The Unix philosophy of interoperation between small programs is
firmly embraced by recs.

Missing something? Write your own!

package App::RecordStream::Operation::mogrify;
use base "App::RecordStream::Operation";

sub init { ... }
sub usage { ... }

sub accept_record {
 my ($self, $r) = @_;
 ...
 $self->push_record($r);
}

But maybe you want as much infrastructure support as a core recs command. In this
case, you can write your own operation subclass that defines a few required methods.
The recs command dispatcher will automatically pick up this class if it’s in your @INC
somewhere, just look at the output of `recs --list` to see if it’s found. In this example,
an operation named mogrify accepts records and outputs records.

Missing something? Write your own!

package App::RecordStream::Operation::mogrify;
use base "App::RecordStream::Operation";

sub init { ... }
sub usage { ... }

sub accept_line {
 my ($self, $r) = @_;
 ...
 $self->push_record($r);
}

You can also define an accept_line method if you want to handle textual input lines,
or...

Missing something? Write your own!

package App::RecordStream::Operation::mogrify;
use base "App::RecordStream::Operation";

sub init { ... }
sub usage { ... }

sub accept_record {
 my ($self, $r) = @_;
 ...
 $self->push_line($r);
}

...or use the push_line method if you want to accept records but output in text lines.
This is what the input/output edge commands do.

Getting recs

$ curl -fL# https://recs.pl > recs

$ chmod +x recs

$./recs --version

recs/4.0.14 (fatpacked)

$ cpanm --interactive App::RecordStream

github.com/benbernard/RecordStream

By this point hopefully you’re excited to try out recs and give it a spin, and lucky for
you recs is pretty darn easy to start using anywhere you find yourself needing it.
While you have the option of a full CPAN-based install and choosing to install
dependencies for optional features, the core of recs is pure-Perl and provided as a
single standalone script.

In my experience, this portability is key for making recs a part of my daily data-diving
life. Since it’s easy to download and run no matter the Perl version, I no longer have
to worry about copying data around from remote servers just so I can have the
convenience of making sense of it using recs.

https://recs.pl
https://github.com/benbernard/RecordStream
https://github.com/benbernard/RecordStream

Getting help

• recs help
• recs examples & recs story
• recs command --help-all
• metacpan.org/release/App-RecordStream

• Open an issue on Github or rt.cpan.org
• #spug on irc.perl.org

The documentation for recs is pretty good, at least for the commands. One thing
worth noting is that --help by default is an abbreviated form. There is often more help
under --help-all or other sub-categories of help, so read the full option list printed by --
help! Details on some of the trickier bits of recs — its tiny DSLs, for example — are
behind some of these options.

If you still have problems, Ben Bernard, one of the original authors, and I have helped
a few folks out via questions raised on Github issues or rt.cpan.org, so feel free to
give that a shot if you’re really stuck. Finally, there’s at least two folks I know of,
myself included, using recs on the #spug channel. It’s a very quiet channel, but I idle
there nonetheless.

https://metacpan.org/release/App-RecordStream
https://metacpan.org/release/App-RecordStream

Thanks!
Questions?

Thanks again so much for attending, and I hope after this you’re as excited as I am
about recs! If you have any questions, I’d love to answer them.

